Tuesday, April 28, 2009

Satelite internet provides


This employs a satellite in geostationary orbit to relay data from the satellite company to each customer. Satellite Internet is usually among the most expensive ways of gaining broadband Internet access, but in rural areas it may only compete with cellular broadband. However, costs have been coming down in recent years to the point that it is becoming more competitive with other broadband options. German ISP, Filiago, offers the ASTRA2Connect satellite Internet system for €320 (equipment) plus €100 (registration) and a flat rate monthly fee dependent on bandwidth - from €20 for 256kbit/s download, 64 kbit/s upload, to €80 for 2048kbit/s download, 128 kbit/s upload.

Satellite Internet also has a high latency problem caused by the signal having to travel 35,000 km (22,000 miles) out into space to the satellite and back to Earth again. The signal delay can be as much as 500 milliseconds to 900 milliseconds, which makes this service unsuitable for applications requiring real-time user input such as certain multiplayer Internet games and first-person shooters played over the connection. Despite this, it is still possible for many games to be played, but the scope is limited to real-time strategy or turn-based games. The functionality of live interactive access to a distant computer can also be subject to the problems caused by high latency. These problems are more than tolerable for just basic email access and web browsing and in most cases are barely noticeable.

There is no simple way to get around this problem. The delay is primarily due to the speed of light being 300,000 km/second (186,000 miles per second). Even if all other signaling delays could be eliminated it still takes the electromagnetic wave 233 milliseconds to travel from ground to the satellite and back to the ground, a total of 70,000 km (44,000 miles) to travel from the user to the satellite company.

Since the satellite is usually being used for two-way communications, the total distance increases to 140,000 km (88,000 miles), which takes a radio wave 466 ms to travel. Factoring in normal delays from other network sources gives a typical connection latency of 500-700 ms. This is far worse latency than even most dial-up modem users' experience, at typically only 150-200 ms total latency.

Most satellite Internet providers also have a FAP (Fair Access Policy). Perhaps one of the largest disadvantages of satellite Internet, these FAPs usually throttle a user's throughput to dial-up data rates after a certain "invisible wall" is hit (usually around 200 MB a day). This FAP usually lasts for 24 hours after the wall is hit, and a user's throughput is restored to whatever tier they paid for. This makes bandwidth-intensive activities nearly impossible to complete in a reasonable amount of time.

The European ASTRA2Connect system has a FAP based on a monthly limit of 2Gbyte of data downloaded, with download data rates reduced for the remainder of the month if the limit is exceeded.

Rural Broadband

One of the great challenges of broadband is to provide service to potential customers in areas of low population density, such as to farmers, ranchers, and small towns. In cities where the population density is high, it is easy for a service provider to recover equipment costs, but each rural customer may require expensive equipment to get connected.

Several rural broadband solutions exist, though each has its own pitfalls and limitations. Some choices are better than others, but are dependent on how proactive the local phone company is about upgrading their rural technology.

Wireless Internet Service Provider (WISPs) are rapidly becoming a popular broadband option for rural areas.

Wired Ethernet

Where available, this method of broadband connection to the Internet would indicate that the Internet access is very fast. However, just because Ethernet is offered doesn't mean that the full 10, 100, or 1000 Mbit/s connection is able to be utilized for direct Internet access. In a college dormitory for example, the 100 Mbit/s Ethernet access might be fully available to on-campus networks, but Internet access bandwidths might be closer to 4xT-1 data rate (6 Mbit/s). If you are sharing a broadband connection with others in a building, the access bandwidth of the leased line into the building would of course govern the end-user's data rate.

However, in certain locations, true Ethernet broadband access might be available. This would most commonly be the case at a POP or a data center, and not at a typical residence or business. When Ethernet Internet access is offered, it could be fiber-optic or copper twisted pair, and the bandwidth will conform to standard Ethernet data rates of up to 10 Gbit/s. The primary advantage is that no special hardware is needed for Ethernet. Ethernet also has a very low latency.

Disadvantages of Internet Broadband

  • ISDN offerings are dwindling in the marketplace due to the widespread use of faster and cheaper alternatives.
  • ISDN routers, terminal adapters ("modems"), and telephones are more expensive than ordinary POTS equipment, like dial-up modems.
  • ISDN provisioning can be complicated due to the great number of options available.
  • ISDN users must dial in to a provider that offers ISDN Internet service, which means that the call could be disconnected.
  • ISDN is billed as a phone line, to which is added the bill for Internet ISDN access."Always on" data connections are not available in all locations.
  • Some telephone companies charge unusual fees for ISDN, including call setup fees, per minute fees, and higher rates than normal for other services.

Advantages of Internet broadband access

  • Constant data rate at 64 kbit/s for each DS0 channel.
  • Two way broadband symmetric data transmission, unlike ADSL.
  • One of the data channels can be used for phone conversation without disturbing the data transmission through the other data channel. When a phone call is ended, the bearer channel can immediately dial and re-connect itself to the data call.
  • Call setup is very quick.
  • Low latency
  • ISDN Voice clarity is unmatched by other phone services.
  • Caller ID is almost always available for no additional fee.
  • Maximum distance from the central office is much greater than it is for DSL.
  • When using ISDN-BRI, there is the possibility of using the low-bandwidth 16 kbit/s "D" channel for packet data and for always on capabilities.

Integrated Service Digital Network(ISDN) Telephone data

Integrated Service Digital Network (ISDN) is one of the oldest broadband digital access methods for consumers and businesses to connect to the Internet. It is a telephone data service standard. Its use in the United States peaked in the late 1990s prior to the availability of DSL and cable modem technologies. Broadband service is usually compared to ISDN-BRI because this was the standard broadband access technology that formed a baseline for the challenges faced by the early broadband providers. These providers sought to compete against ISDN by offering faster and cheaper services to consumers.

A basic rate ISDN line (known as ISDN-BRI) is an ISDN line with 2 data "bearer" channels (DS0 - 64 kbit/s each). Using ISDN terminal adapters (erroneously called modems), it is possible to bond together 2 or more separate ISDN-BRI lines to reach bandwidths of 256 kbit/s or more. The ISDN channel bonding technology has been used for video conference applications and broadband data transmission.

Primary rate ISDN, known as ISDN-PRI, is an ISDN line with 23 DS0 channels and total bandwidth of 1,544 kbit/s (US standard). ISDN E1 (European standard) line is an ISDN lines with 30 DS0 channels and total bandwidth of 2,048 kbit/s. Because ISDN is a telephone-based product, a lot of the terminology and physical aspects of the line are shared by the ISDN-PRI used for voice services. An ISDN line can therefore be "provisioned" for voice or data and many different options, depending on the equipment being used at any particular installation, and depending on the offerings of the telephone company's central office switch. Most ISDN-PRI's are used for telephone voice communication using large PBX systems, rather than for data. One obvious exception is that ISPs usually have ISDN-PRI's for handling ISDN data and modem calls.

It is mainly of historical interest that many of the earlier ISDN data lines used 56 kbit/s rather than 64 kbit/s "B" channels of data. This caused ISDN-BRI to be offered at both 128 kbit/s and 112 kbit/s rates, depending on the central office's switching equipment.

Multilinking Modems Technology

Roughly double the dial-up rate can be achieved with multilinking technology. What is required are two modems, two phone lines, two dial-up accounts, and ISP support for multilinking, or special software at the user end. This inverse multiplexing option was popular with some high-end users before ISDN, DSL and other technologies became available.

Diamond and other vendors had created dual phone line modems with bonding capability. The data rate of dual line modems is faster than 90 kbit/s. The Internet and phone charge will be twice the ordinary dial-up charge.Load balancing takes two internet connections and feeds them into your network as one double data rate, more resilient internet connection. By choosing two independent internet providers the load balancing hardware will automatically use the line with least load which means should one line fail, the second one automatically takes up the slack.

High Speed Internet Coverage

Broadband is often called "high-speed" Internet, because it usually has a high rate of data transmission. In general, any connection to the customer of 256 kbit/s (0.256 Mbit/s) or greater is more concisely considered broadband Internet. The International Telecommunication Union Standardization Sector (ITU-T) recommendation I.113 has defined broadband as a transmission capacity that is faster than primary rate ISDN, at 1.5 to 2 Mbit/s. The FCC definition of broadband is 768 kbit/s (0.8 Mbit/s). The Organization for Economic Co-operation and Development (OECD) has defined broadband as 256 kbit/s in at least one direction and this bit rate is the most common baseline that is marketed as "broadband" around the world. There is no specific bitrate defined by the industry, however, and "broadband" can mean lower-bitrate transmission methods. Some Internet Service Providers (ISPs) use this to their advantage in marketing lower-bitrate connections as broadband.

In practice, the advertised bandwidth is not always reliably available to the customer; ISPs often allow a greater number of subscribers than their backbone connection or neighborhood access network can handle, under the assumption that most users will not be using their full connection capacity very frequently. This aggregation strategy works more often than not, so users can typically burst to their full bandwidth most of the time; however, peer-to-peer (P2P) file sharing systems, often requiring extended durations of high bandwidth, stress these assumptions, and can cause major problems for ISPs who have excessively overbooked their capacity. For more on this topic, see traffic shaping. As takeup for these introductory products increases, telcos are starting to offer higher bit rate services. For existing connections, this most of the time simply involves reconfiguring the existing equipment at each end of the connection.

As the bandwidth delivered to end users increases, the market expects that video on demand services streamed over the Internet will become more popular, though at the present time such services generally require specialized networks. The data rates on most broadband services still do not suffice to provide good quality video, as MPEG-2 video requires about 6 Mbit/s for good results. Adequate video for some purposes becomes possible at lower data rates, with rates of 768 kbit/s and 384 kbit/s used for some video conferencing applications, and rates as low as 100 kbit/s used for videophones using H.264/MPEG-4 AVC. The MPEG-4 format delivers high-quality video at 2 Mbit/s, at the low end of cable modem and ADSL performance.

Increased bandwidth has already made an impact on newsgroups: postings to groups such as alt.binaries.* have grown from JPEG files to entire CD and DVD images. According to NTL, the level of traffic on their network increased from a daily inbound news feed of 150 gigabytes of data per day and 1 terabyte of data out each day in 2001 to 500 gigabytes of data inbound and over 4 terabytes out each day in 2002.

Mobile broadband coverage

In current scenario, this network has covered every nook and corner for the purpose of giving all the telephonic prerequisites so that, they can keep in touch with their buddy and relatives and the list goes on. There is a nail biting competition with the aim of enhancing their net work in current arena that is why they are on the verge of shining their quality and features at the rate of time progress. More or less there are plenty of prominent companies which are keen to get more and more customers and their names are given below:
Outstanding mobile broadband providers:

A- Vodafone
B- O2
C- 3
D- 3G
E- Sky
F- Virgin
G- Orange

These are prominent companies which are having an eye on the mobile lovers so as to getting more and more customers to keep pace with the time on account of rat race or tough competition, improvements are going on. In experts' point of view, saturation point has not come so far still long way to go.

Comparison between past and present:

By full utilization of 3G Coverage, you can get the best execution of mobiles efficiency with magnificent downloads speed which is 15 times faster that were previously available and upload speed has been 25 times faster than earlier. Mobile Broadband has been new revolution in the arena of info- tech in consequence of boosting your business at Global level in other words in all domain without moving to and fro so productivity of business can be developed by accessing to the internet you can use it while being on the move, at home, in the office, in café and last but not the least on-site.

By induction of USB Modem Stick and Express Card data cards, Mobile Broadband Coverage has added a new star to its name for making its working capacity gracefully. The work which used to be Herculean task has been piece of cake. The activation of the internet is possible by plugging in any compatible laptop with the snap of fingers; you will be an eligible to make the most of laptop in addition to the internet.

In comparison to past, Mobile Broadband Coverage is getting cheap and cheap day by day because of healthy competition is on in the market consequently; there are numerous packages which are initiated in the market such as pay as you go, unlimited plan, broadband with free laptop and so forth.Keeping in mind, mobile broadband providers companies are making their business strategy for 2009-2010 to capture market.